
Introduction Word Embeddings Deep Learning Transformers References

Workshop ‘Computational Text Analysis’
Session 3: From Word Embeddings to Transformer Models

Mirko Wegemann

26 March 2025

Mirko Wegemann Workshop ‘Computational Text Analysis’ 1/77

Introduction Word Embeddings Deep Learning Transformers References

Goals of this workshop

1. Automation of data collection

2. Analysis of textual data
• unsupervised approaches (e.g., topic models)
• supervised approaches (e.g. text classification)

3. Analysis of images-as-data

Mirko Wegemann Workshop ‘Computational Text Analysis’ 2/77

Introduction Word Embeddings Deep Learning Transformers References

What we’ll cover today

• We deal with a more advanced representation of text by
looking at a multidimensional embedding space

• We use embeddings to understand the context in which
certain terms are used and how this context may change over
time

• We also use embeddings to apply deep neural networks in
supervised classification

• We (may) get an idea of how embeddings relate to
transformer models and how we could apply these in Python

Mirko Wegemann Workshop ‘Computational Text Analysis’ 3/77

Introduction Word Embeddings Deep Learning Transformers References

Why bags-of-words may not be sufficient...

Kusner et al. (2015)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 4/77

Introduction Word Embeddings Deep Learning Transformers References

What bags-of-words would do... I
Remember a bag-of-words

Obama

speaks

the

to

media

in
Illinois

The

President

greets

press

Chicago

Mirko Wegemann Workshop ‘Computational Text Analysis’ 5/77

Introduction Word Embeddings Deep Learning Transformers References

What bags-of-words would do... II

Figure: This is how our text would look in a bags-of-words structure

What could be problematic here?

Mirko Wegemann Workshop ‘Computational Text Analysis’ 6/77

Introduction Word Embeddings Deep Learning Transformers References

What bags-of-words would do... III

Major shortcoming of bags-of-words approaches is that they
neither capture the (1) relation of a word towards other words
nor the (2) position of a word within a sentence.

They are context-blind.

Mirko Wegemann Workshop ‘Computational Text Analysis’ 7/77

Introduction Word Embeddings Deep Learning Transformers References

What bags-of-words would do... IV

We can distinguish into two types of embeddings:

1. static embeddings, like GloVe (Pennington et al. 2014) or
numberbatch

2. contextual embeddings, like Bert (Peters et al. 2018)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 8/77

Introduction Word Embeddings Deep Learning Transformers References

The idea behind word embeddings I

• idea: capture the similarity of words

• we can assign a word to a multidimensional vector that
denotes its relationship towards other words

• “distances between such vectors are informative about the
semantic similarity of the underlying concepts they connote
for the corpus on which they were built” (P. Rodriguez and
Spirling 2021)

• they can “predict the occurrence of a word by the surrounding
word in a text sequence” (Rheault and Cochrane 2020, p. 112)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 9/77

Introduction Word Embeddings Deep Learning Transformers References

The idea behind word embeddings II

Embeddings put words in a k-dimensional space (simplified to
three dimensions here).

1

Mirko Wegemann Workshop ‘Computational Text Analysis’ 10/77

Introduction Word Embeddings Deep Learning Transformers References

The idea behind word embeddings III

Kusner et al. (2015)
1Source:

https://towardsdatascience.com/a-guide-to-word-embeddings-8a23817ab60f
Mirko Wegemann Workshop ‘Computational Text Analysis’ 11/77

https://towardsdatascience.com/a-guide-to-word-embeddings-8a23817ab60f
https://towardsdatascience.com/a-guide-to-word-embeddings-8a23817ab60f

Introduction Word Embeddings Deep Learning Transformers References

For what they may be helpful...

P. Rodriguez and Spirling (2021) distinguish between two
functions:

1. instrumental function: they capture more meaning than
bags-of-words → they could enhance our classification tasks

2. they have a value in themselves (analysis on the word level)
• for example: if the distance between the term ‘migrant’ and

‘hardworking’ is closer for Green than for Conservative parties,
we might infer underlying party framing strategies

Mirko Wegemann Workshop ‘Computational Text Analysis’ 12/77

Introduction Word Embeddings Deep Learning Transformers References

Decisions to make when using word embeddings I

• word2vec vs. GloVe vs. fasttext vs. numberbatch
(difference in training of embeddings)

• pre-trained vs. locally trained embeddings

• window size: how large is the context of surrounding words

• dimensionality: how many dimensions do we consider

Mirko Wegemann Workshop ‘Computational Text Analysis’ 13/77

Introduction Word Embeddings Deep Learning Transformers References

Decisions to make when using word embeddings II

Pre-trained vs. local

• representations of a word usually learned by deep learning
techniques (like neural networks)

• we can either create corpus-specific embeddings which learn
the relations only from a specific domain

• ...or use pre-trained embeddings (often trained on a large
corpus like the Wikipedia)

• decision depends on corpus size and specificity

Mirko Wegemann Workshop ‘Computational Text Analysis’ 14/77

Introduction Word Embeddings Deep Learning Transformers References

Decisions to make when using word embeddings III
Window size

• the larger the window size, the more distant words will
influence the vector of an embedding

We predict a word wt by the words surrounding it wt−1, wt−2, ...,
wt−n → n is the window size

Rheault and Cochrane (2020, p. 116)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 15/77

Introduction Word Embeddings Deep Learning Transformers References

Decisions to make when using word embeddings IV

Dimensionality
• the number of dimensions can be freely chosen

• the term dimensions refers to the length of a term’s vector
representation

• the more dimensions, the more we features of a word we
capture but the more computationally intense it becomes (and
the more models tend to overfit)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 16/77

Introduction Word Embeddings Deep Learning Transformers References

Decisions to make when using word embeddings V

In practice, hyperparameter choice only has marginal effects –
pre-trained models perform well (P. Rodriguez and Spirling 2021)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 17/77

Introduction Word Embeddings Deep Learning Transformers References

Using word embeddings I

There are three different methods to obtain embeddings

1. train your own ”local” embeddings with a neural network

2. take pre-trained embeddings (numberbatch, e.g., for GloVe or
other multilingual embeddings)

3. fine-tune pre-trained embeddings

Mirko Wegemann Workshop ‘Computational Text Analysis’ 18/77

https://github.com/commonsense/conceptnet-numberbatch?tab=readme-ov-file
https://nlp.stanford.edu/projects/glove/
http://www.cs.cmu.edu/~afm/projects/multilingual_embeddings.html

Introduction Word Embeddings Deep Learning Transformers References

Using word embeddings II

Depending on the method you choose, different steps are involved.
For pre-trained embeddings:

• Data pre-processing

• Match between input and embedding data

• Data analysis

For locally-trained embeddings:

• Data pre-processing

• Use a neural network to learn the embeddings

• Data analysis

We’ll focus on pre-trained embeddings (which we later fine-tune)
here, but there’s some code in the script on training your own
embeddings.

Mirko Wegemann Workshop ‘Computational Text Analysis’ 19/77

Introduction Word Embeddings Deep Learning Transformers References

In R: Pre-processing

We do not necessarily need to pre-process but:

• removing very frequent words (or stopwords) without much
semantic meaning may boost our embeddings

• same applies to characters (like punctuation and often digits)

• more advanced: collocation analysis creating pairs of common
phrases (e.g. European Union) or lemmatization

Mirko Wegemann Workshop ‘Computational Text Analysis’ 20/77

Introduction Word Embeddings Deep Learning Transformers References

Tokenization for embeddings
For embeddings, we’ll use a different tokenizer that creates a
slightly different data structure compared to common tools in
quanteda which are used for bags-of-words approaches.

1 > tokens <- word_tokenizer(df$text_prep)
2 > it <- itoken(tokens)
3 > vocab <- create_vocabulary(it, stopwords =

c(stopwords(language="en"),"also", "s", "t", "d"))
4 > tail(vocab)
5 Number of docs: 187689
6 179 stopwords: i, me, my, myself, we, our ...
7 ngram_min = 1; ngram_max = 1
8 Vocabulary:
9 term term_count doc_count

10 1: national 25786 21412
11 2: ensure 27085 23822

Mirko Wegemann Workshop ‘Computational Text Analysis’ 21/77

Introduction Word Embeddings Deep Learning Transformers References

Match between input and embedding data

If we use pre-trained embeddings, it’s possible that some words are
not part of the embedding matrix and vice versa. We need to align
both matrices.
1. Identify words not in the pre-trained embeddings:

1 not_in_emb <- vocab %>%
2 filter(!term %in% emb_wts$V1)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 22/77

Introduction Word Embeddings Deep Learning Transformers References

Match between input and embedding data II

2. Drop terms not in our corpus

1 # store V1 (terms) as row names
2 row_names <- emb_wts %>%
3 filter(V1 %in% vocab$term) %>%
4 select(V1)
5
6 # filter the embeddings to terms of our corpus
7 embeddings <- emb_wts %>%
8 filter(V1 %in% vocab$term) %>%
9 select(-V1) %>%

10 as.matrix()
11
12 # set terms as rownames
13 rownames(embeddings) <- row_names$V1

Mirko Wegemann Workshop ‘Computational Text Analysis’ 23/77

Introduction Word Embeddings Deep Learning Transformers References

Match between input and embedding data III

3. Add terms not in pre-trained corpus

1 # add those words which embedding vector does not have
with a 0

2 embeddings_na <- matrix(data = 0, nrow =
nrow(not_in_emb), ncol = 300)

3
4 # set terms as rownames
5 rownames(embeddings_na) <- not_in_emb$term
6
7 # row bind available and not available embeddings
8 embeddings <- rbind(embeddings, embeddings_na)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 24/77

Let’s do it in R

Introduction Word Embeddings Deep Learning Transformers References

Descriptive analysis I

Nearest Neighbours (which words are close to each other?)
A traditional example is the equation

Berlin = Paris − France + Germany (1)

Basically saying that the distance between the word Berlin and
Germany should be the same as the one between Paris and France.

Mirko Wegemann Workshop ‘Computational Text Analysis’ 26/77

Introduction Word Embeddings Deep Learning Transformers References

What’s the capital of Germany?

We can translate this equation to R.

1 > which_capital = embeddings["paris", , drop = FALSE] -
2 + embeddings["france", , drop = FALSE] +
3 + embeddings["germany", , drop = FALSE]
4 > capital_cos_sim = sim2(x = embeddings, y =

which_capital, method = "cosine", norm = "l2")
5 > head(sort(capital_cos_sim[,1], decreasing = TRUE), 5)
6 berlin germany frankfurt hamburg paris
7 0.7635345 0.7232592 0.6718858 0.6530555 0.6509711

Mirko Wegemann Workshop ‘Computational Text Analysis’ 27/77

Introduction Word Embeddings Deep Learning Transformers References

More substantively

Terms in proximity to ”migrant”

1 > find_nns(embeddings[’migrant’,], pre_trained =
embeddings, N = 20)

2 [1] "migrant" "immigrant" "refugee"
"worker" "undocumented" "farmworker"
"indigenous"

3 [8] "unskilled" "migration" "expatriate"
"immigration" "migratory" "resettlement" "labor"

4 [15] "employment" "unemployed" "population"
"plight" "welfare" "labour"

Mirko Wegemann Workshop ‘Computational Text Analysis’ 28/77

Introduction Word Embeddings Deep Learning Transformers References

Descriptive Analysis II

Similarities between terms by grouping variables (which words are
used by which actors?)

1 context_wv_parfam <- dem_group(context_dem, groups =
context_dem@docvars$parfam)

2 dim(context_wv_parfam)
3
4 context_nns <- nns(context_wv_parfam, pre_trained =

embeddings, N = 10, candidates =
context_wv_parfam@features, as_list = TRUE)

5 context_nns

Mirko Wegemann Workshop ‘Computational Text Analysis’ 29/77

Let’s do it in R

Introduction Word Embeddings Deep Learning Transformers References

Embedding regression I

• contextual use of a term

• for this, we use covariates (as before in the descriptive
analysis)

• we basically average an embedding in different contexts and
compare how similar it is (before we attribute low weights to
words which often occur in both contexts)

P. L. Rodriguez et al. (2023)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 31/77

Introduction Word Embeddings Deep Learning Transformers References

Embedding regression II

As we take the context into consideration, we come closer to
capturing different word meanings:

Mirko Wegemann Workshop ‘Computational Text Analysis’ 32/77

Introduction Word Embeddings Deep Learning Transformers References

Embedding regression in R

conText allows you to estimate similarities by group for every
target term and provides you with standard errors

1 set.seed(451)
2 model2 <- conText(formula = trump ˜ prepost,
3 data = toks,
4 pre_trained = embeddings,
5 transform = TRUE, transform_matrix = trans_mat,
6 bootstrap = TRUE,
7 num_bootstraps = 100,
8 permute = TRUE, num_permutations = 10,
9 window = 10,

10 verbose = T)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 33/77

Let’s do it in R

Introduction Word Embeddings Deep Learning Transformers References

Evaluation of Embeddings I

• for downstream tasks (e.g., classification with embeddings),
we can use typical metrics in machine learning (F1, accuracy,
confusion matrix, etc.)

• for intrinsic tasks, more difficult: what makes an embedding
particularly good?

Mirko Wegemann Workshop ‘Computational Text Analysis’ 35/77

Introduction Word Embeddings Deep Learning Transformers References

Evaluation of Embeddings II

P. Rodriguez and Spirling (2021) suggest ‘turing validation’

• computing tasks good if they cannot be differentiated from
human tasks

• in practice: let humans compare a list of word similarities
made by humans with a list by embeddings

→ if humans cannot distinguish between both lists, performance
is good

• other validation includes correlation between models

• in the scaling task by Rheault and Cochrane (2020),
cross-validation with other measures of party positions

Mirko Wegemann Workshop ‘Computational Text Analysis’ 36/77

Time for a break?

Introduction Word Embeddings Deep Learning Transformers References

Embeddings and deep learning

“Embeddings are numerical representations of real-world objects
that machine learning (ML) and artificial intelligence (AI) systems
use to understand complex knowledge domains like humans do.”
Amazon AWS

• they reduce dimensionality and provide more information than
bags-of-words

• in addition to instrumental interests in similarities, they can
form the starting point for downstream tasks like classification

Mirko Wegemann Workshop ‘Computational Text Analysis’ 38/77

https://aws.amazon.com/what-is/embeddings-in-machine-learning/

Introduction Word Embeddings Deep Learning Transformers References

Excursion: Neural Networks I

In neural networks, we do not tell the network how to make sense
of our data but let it learn
Introduction to deep learning

Mirko Wegemann Workshop ‘Computational Text Analysis’ 39/77

https://course.fast.ai/Lessons/lesson1.html

Introduction Word Embeddings Deep Learning Transformers References

Excursion: Neural Networks II

• neural network has several layers that connect input to output
data

• the intermediate layers are so-called ‘hidden layers’

→ there are always one input and one output layer; but there
can be several hidden layers

Mirko Wegemann Workshop ‘Computational Text Analysis’ 40/77

Introduction Word Embeddings Deep Learning Transformers References

Excursion: Neural Networks III

• cost function: deviation between predicted and actual values
→ error

• split in training and test data: to monitor predictive quality
[optimally, even threefold split into training, test and
evaluation data]

• deep learning: neural network with more than 3 layers (more
than one hidden layer)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 41/77

Introduction Word Embeddings Deep Learning Transformers References

Excursion: Neural Networks III
Function of neural networks

• similar to brain activity: layer produces a signal that activates
the next layer

• each layer behaves similar to a linear regression model (it
consists of inputs, assigns weights and creates an output)

• if output surpasses a certain threshold, it activates the next
layer, and becomes the input data of that layer → the
activation functions allows for non-linearities

• progress/accuracy of neural network is monitored by cost
function

Mirko Wegemann Workshop ‘Computational Text Analysis’ 42/77

Introduction Word Embeddings Deep Learning Transformers References

Excursion: Neural Networks IV
A practical example

Decision to make: Should I go surfing or not?2

• three different factors influencing my decision

1. waves good?
2. beach crowded?
3. shark attack?

For each decision, a neural network assigns a weight which leads to
an output.

2Source: IBM
Mirko Wegemann Workshop ‘Computational Text Analysis’ 43/77

https://www.ibm.com/topics/neural-networks

Introduction Word Embeddings Deep Learning Transformers References

Excursion: Neural Networks IV
A practical example II

• after each step/epoch: the output (predicted) data is
compared to the actual data → loss is created: how much do
the predictions of me going surfing deviate from my actual
behaviour?

• goal is to minimize loss (without overfitting since the results
of a neural network should apply to other data as well)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 44/77

Introduction Word Embeddings Deep Learning Transformers References

Excursion: Neural Network VI

Try out your own neural network here

Mirko Wegemann Workshop ‘Computational Text Analysis’ 45/77

https://playground.tensorflow.org/

Introduction Word Embeddings Deep Learning Transformers References

Classification in R

We will use keras to define a deep learning model in R.
• sequential vs. functional models

• in sequential models, each hidden layer is executed before
another is activated

• functional models allow to create branches which can be used
to predict different outputs at the same time

• dense (also fully connected) vs. convolutional layers (for a
better understanding, cf. Mandelbaum and Shalev (2016))

• dense layers feed model with each input (token) to create an
output

• convolutional layers, not all inputs are used (but in our case,
only words close to each other) → it scans through a sequence
with window size n

Mirko Wegemann Workshop ‘Computational Text Analysis’ 46/77

Introduction Word Embeddings Deep Learning Transformers References

Hyperparameters I

We can adjust various parameters, some of the most important
ones are

• hidden layers: complexity of a model, more complexity can
increase precision but also lead to overfitting

• drop-out rate: dropping neurons to avoid overfitting (usually
between 0.2-0.5)

• learning rate: how much weights are updated after each step

• batches: the chunk size which will be propagated to the
neural network (the larger, the more memory needed; the
smaller, the less precise)

• number of epochs: cycle of a learning process (from input to
output and back to the input)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 47/77

Introduction Word Embeddings Deep Learning Transformers References

Hyperparameters II
• activation function: captures non-linearity of data, there are

many functions (sigmoid often used for binary, softmax for
multi-class predictions) as the final output layer; hidden layers
commonly use ReLu

Every time, the threshold (x > 0) is surpassed, a signal is fed into
the next layer

Mirko Wegemann Workshop ‘Computational Text Analysis’ 48/77

Introduction Word Embeddings Deep Learning Transformers References

Hyperparameters III

How different learning rates affect the error

Mirko Wegemann Workshop ‘Computational Text Analysis’ 49/77

Introduction Word Embeddings Deep Learning Transformers References

Hyperparameters IV

What batch sizes mean in relation to epochs

Mirko Wegemann Workshop ‘Computational Text Analysis’ 50/77

Introduction Word Embeddings Deep Learning Transformers References

Hyperparameters V

What overfitting means in a practical example

Mirko Wegemann Workshop ‘Computational Text Analysis’ 51/77

Introduction Word Embeddings Deep Learning Transformers References

Steps in training a deep-learning model

1. preparation of input data (train/test split, extraction of
features and labels, transformation to numeric sequence
structure)

2. definition of model (its input, hidden and output layer)

3. set monitoring metrics

4. training model

5. predicting test data and evaluate performance

Mirko Wegemann Workshop ‘Computational Text Analysis’ 52/77

Introduction Word Embeddings Deep Learning Transformers References

Preparation

As before: tokenization and creation of vocabulary. In addition,
sequencing:

1 tokenizer <- text_tokenizer(num_words = nrow(vocab)) %>%
2 fit_text_tokenizer(df_sub$text_prep)
3 sequences <- texts_to_sequences(tokenizer,

df_sub$text_prep)
4 head(sequences)
5
6 # sequences must be of equal length:
7 max_len <- 50 # here, set to 50
8 features <- pad_sequences(sequences, maxlen = max_len)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 53/77

Introduction Word Embeddings Deep Learning Transformers References

Model definition
An example of a neural network with pre-trained embeddings as
input, two hidden layers (one dense, one convolutional) and one
output vector.

1 model <- keras_model_sequential() %>%
2 layer_embedding(
3 input_dim = dim(embeddings)[1],
4 input_length = max_len,
5 output_dim = dim(embeddings)[2],
6 weights = list(embeddings),
7 trainable = T) %>%
8 layer_conv_1d(filters = 128, kernel_size = 5,

activation = ’relu’) %>%
9 layer_global_max_pooling_1d() %>%

10 layer_dense(units = 128, activation = "relu") %>%
11 layer_dropout(rate = 0.4) %>%
12 layer_dense(units = 1, activation = "sigmoid")
Mirko Wegemann Workshop ‘Computational Text Analysis’ 54/77

Introduction Word Embeddings Deep Learning Transformers References

Set monitoring metrics

In the next step, we define the loss we want to use (for binary
tasks usually binary crossentropy), the learning rate and the
metrics shown after each epoch

1 model %>% compile(
2 loss = "binary_crossentropy",
3 optimizer = optimizer_adam(learning_rate = 0.001),
4 metrics = c(’accuracy’, metric_precision(),

metric_recall())
5)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 55/77

Introduction Word Embeddings Deep Learning Transformers References

Train the model

At the training stage, we add two more hyperparameters (epochs
and batch size)

1 history <- model %>% fit(
2 x = x_train,
3 y = y_train,
4 epochs = 20,
5 batch_size = 128,
6 validation_data = list(x_test, y_test),
7 callbacks = list(stop_if_no_improvement)
8)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 56/77

Introduction Word Embeddings Deep Learning Transformers References

Prediction and evaluation

Finally, we predict the data and evaluate (e.g., with the
confusionMatrix function of the caret package)

1 pred_results <- as.data.frame(predict(model, x_test))
2
3 # classify cases with probability > 0.5 as 1
4 pred_results$pred <- ifelse(pred_results$V1>=0.5, 1, 0)
5
6 # combine predictions with true annotated data
7 pred_results$true <- y_test
8
9 confusionMatrix(as.factor(pred_results$pred),

as.factor(pred_results$true))

Mirko Wegemann Workshop ‘Computational Text Analysis’ 57/77

Let’s do it in R

Introduction Word Embeddings Deep Learning Transformers References

Evolution of transformer models

In parallel to the evolution of text-as-data in social science,
computational science has developed more and more sophisticated
models

Mirko Wegemann Workshop ‘Computational Text Analysis’ 59/77

Introduction Word Embeddings Deep Learning Transformers References

Transformer models I
Transformer models are a special type of deep learning models;
they are not sequential and can pay attention to multiple inputs at
the same time

• attention layer: features to pay particular attention to

• e.g., in a translation task, the transformer can pay attention
to surrounding words which are important for the correct
translation (e.g., ‘I am’ → ‘Je suis’)

Vaswani et al. (2017) → they can be parallelized and are much
faster!

Mirko Wegemann Workshop ‘Computational Text Analysis’ 60/77

Introduction Word Embeddings Deep Learning Transformers References

Transformer models II

Transformer consider not only one layer of information but build
several layers that better explain what a particular feature means
in a context.

• semantical (linguistic meaning)

• morphological (form of a word)

• syntactic (sentence structure)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 61/77

Introduction Word Embeddings Deep Learning Transformers References

How transformer models work I

Encoder translates words into multidimensional representations,
decoder translates representations into words.

Mirko Wegemann Workshop ‘Computational Text Analysis’ 62/77

Introduction Word Embeddings Deep Learning Transformers References

How transformer models work II

Input tokens are embedded, get a positional encoding and are fed
into a multi-head attention layer. This creates context-specific
embeddings for each input token. (Wankmüller 2022, p. 24)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 63/77

Introduction Word Embeddings Deep Learning Transformers References

How transformer models work III

An example of an attention layer: transformers focus on the
context and detect the syntactic relationship between the terms
company and it (Wankmüller 2022, p. 25).

Mirko Wegemann Workshop ‘Computational Text Analysis’ 64/77

Introduction Word Embeddings Deep Learning Transformers References

How transformer models work IV

A few more remarks

• There are not one but eight (!) different attention layers, each
creating individual context vectors (e.g., capturing semantic,
syntactic, morphological structure).

• A decoder works in a very similar way (just in reverse) with
one exception: it is autoregressive: subsequent words are
masked so it has to predict them by itself

Mirko Wegemann Workshop ‘Computational Text Analysis’ 65/77

Introduction Word Embeddings Deep Learning Transformers References

Different models, different architectures

• encoder-decoder architectures are usually used for
translation of text

• for text classification, we use encoder-only models (e.g.
BERT, RoBERTa)

• decoder-only is used for generating texts

Mirko Wegemann Workshop ‘Computational Text Analysis’ 66/77

Introduction Word Embeddings Deep Learning Transformers References

Pre-training

In pre-training of natural language processing, we need a large
corpus that is a very general representation of text.

• usually pre-training is done on large databases (like on
Stanford Sentiment Treebank or on Tweets)

• many of these tasks are self-supervised; for instance, by
masking a token in a sentence and predicting it or by
predicting the order of two sentences (that’s the pre-training
of BERT)

• some more complex pre-training tasks involve training data
(like translation)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 67/77

https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest

Introduction Word Embeddings Deep Learning Transformers References

Pre-training

Pre-training is computationally expensive (and not that good for
the environment!)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 68/77

Introduction Word Embeddings Deep Learning Transformers References

Fine-tuning I

Luckily, most of us won’t care about training a transformer models.
We will usually rely on pre-trained models which can be
downloaded for different applications from Hugging Face → for
free!
There are two options on how to proceed

1. feature extraction: just use the pre-trained model as is (not
domain-specific)

2. fine-tune the pre-trained models; this adjusts the parameters
to our domain

cf. Wankmüller (2022)

Mirko Wegemann Workshop ‘Computational Text Analysis’ 69/77

https://huggingface.co/models

Introduction Word Embeddings Deep Learning Transformers References

Fine-tuning

• fine-tuning allows transfer learning: we take a general model
and make it domain-specific

• during adaptation, the weights of our pre-trained models can
be adjusted

• in neural network lingo, we add another output layer to our
model → usually, the rest of the model architecture remains
the same

Mirko Wegemann Workshop ‘Computational Text Analysis’ 70/77

Introduction Word Embeddings Deep Learning Transformers References

Application in Python

Thanks to the transformers module, we do not need to apply all of
these steps by hand.
transformers:

• pre-processes data (tokenizer)

• applies a task (classification, translation, etc.)

• returns the results of the tasks

Mirko Wegemann Workshop ‘Computational Text Analysis’ 71/77

Let’s switch to Colab.

Introduction Word Embeddings Deep Learning Transformers References

A few notes of caution

These models allow to perform tasks we could not have done
before, but...

• ...they are extremely data intense and need massive
computing power (in an era of climate crisis!)

• ...they replicate biases

• ...their architecture is complex: what happens under the hood
is very difficult to interpret

Mirko Wegemann Workshop ‘Computational Text Analysis’ 73/77

Introduction Word Embeddings Deep Learning Transformers References

Resources

Useful links

• Tutorial on deep learning: Practical Deep Learning

• Tutorial on transformers in Colab A Practical Introduction
to Transformers by Moritz Laurer

• Models for Hugging Face

• GloVe Documentation

Mirko Wegemann Workshop ‘Computational Text Analysis’ 74/77

https://course.fast.ai/
https://github.com/MoritzLaurer/transformers-workshop-comptext-2023
https://github.com/MoritzLaurer/transformers-workshop-comptext-2023
https://huggingface.co/models
https://nlp.stanford.edu/projects/glove/

Thank you for your attention!

...and thanks to Theresa Gessler and some inspiration from her CTA
workshop

...and Moritz Laurer and his Workshop on Transformer at COMPTEXT

http://theresagessler.eu/eui_cta/
http://theresagessler.eu/eui_cta/
https://github.com/MoritzLaurer/transformers-workshop-comptext-2023

References I

Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger, K. Q. (2015).
From Word Embeddings To Document Distances.

Mandelbaum, A., & Shalev, A. (2016). Word Embeddings and
Their Use In Sentence Classification Tasks.
https://doi.org/10.48550/arXiv.1610.08229

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove:
Global vectors for word representation. Proceedings of the
2014 conference on empirical methods in natural language
processing (EMNLP), 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,
Lee, K., & Zettlemoyer, L. (2018). Deep contextualized
word representations. https://arxiv.org/abs/1802.05365

Rheault, L., & Cochrane, C. (2020). Word Embeddings for the
Analysis of Ideological Placement in Parliamentary
Corpora. Political Analysis, 28(1), 112–133.
https://doi.org/10.1017/pan.2019.26

https://doi.org/10.48550/arXiv.1610.08229
https://arxiv.org/abs/1802.05365
https://doi.org/10.1017/pan.2019.26

References II

Rodriguez, P., & Spirling, A. (2021). Word Embeddings: What
works, what doesn’t, and how to tell the difference for
applied research. The Journal of Politics.
https://doi.org/10.1086/715162

Rodriguez, P. L., Spirling, A., & Stewart, B. M. (2023). Embedding
Regression: Models for Context-Specific Description and
Inference. American Political Science Review, 117(4),
1255–1274. https://doi.org/10.1017/S0003055422001228

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., ukasz Kaiser, L., & Polosukhin, I. (2017).
Attention is All you Need. Advances in Neural Information
Processing Systems, 30.

Wankmüller, S. (2022). Introduction to Neural Transfer Learning
With Transformers for Social Science Text Analysis.
Sociological Methods & Research, 1–77.
https://doi.org/10.1177/00491241221134527

https://doi.org/10.1086/715162
https://doi.org/10.1017/S0003055422001228
https://doi.org/10.1177/00491241221134527

	Introduction
	Word Embeddings
	Deep Learning
	Transformers
	References

